Exercise 12

(a) Generalize the geometric construction in Figure 1.1.7 to show that if $\mathbf{v}_{1}=(x, y, z)$ and $\mathbf{v}_{2}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$, then $\mathbf{v}_{1}+\mathbf{v}_{2}=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right)$.
(b) Using an argument based on similar triangles, prove that $\alpha \mathbf{v}=(\alpha x, \alpha y, \alpha z)$ when $\mathbf{v}=(x, y, z)$.

Solution

Part (a)

Part (b)

Multiplying a vector by a number α changes its magnitude by a factor of α as shown in the figure above. By the Pythagorean theorem, the hypotenuses in the $x y$-plane have lengths, $\sqrt{x^{2}+y^{2}}$ and $\sqrt{x^{\prime 2}+y^{\prime 2}}$, respectively.

$$
\begin{aligned}
& \sin \gamma=\frac{z}{|\mathbf{v}|}=\frac{z^{\prime}}{|\alpha \mathbf{v}|} \rightarrow \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{z^{\prime}}{\alpha \sqrt{x^{2}+y^{2}+z^{2}}} \quad \rightarrow \quad z^{\prime}=\alpha z \\
& \tan \gamma=\frac{z}{\sqrt{x^{2}+y^{2}}}=\frac{z^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}} \rightarrow \quad \rightarrow \quad \frac{\sqrt{x^{\prime 2}+y^{\prime 2}}}{\sqrt{x^{2}+y^{2}}}=\frac{z^{\prime}}{z}=\alpha \\
& \cos \beta=\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{y^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}} \quad \rightarrow \quad \frac{\sqrt{x^{\prime 2}+y^{\prime 2}}}{\sqrt{x^{2}+y^{2}}}=\alpha=\frac{y^{\prime}}{y} \quad \rightarrow \quad y^{\prime}=\alpha y} \\
& \sin \beta=\frac{x}{\sqrt{x^{2}+y^{2}}}=\frac{x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}} \rightarrow \quad \rightarrow \quad \frac{\sqrt{x^{\prime 2}+y^{\prime 2}}}{\sqrt{x^{2}+y^{2}}}=\alpha=\frac{x^{\prime}}{x} \quad \rightarrow \quad x^{\prime}=\alpha x
\end{aligned}
$$

Therefore, $\alpha \mathbf{v}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=(\alpha x, \alpha y, \alpha z)$.

